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Abstract 

Despite the increasing relevance of microalgae in science and industry in the last few 

decades, a great part of their application still faces various bottlenecks that prevent their 

derivatives from making a greater contribution to the economy and society. Among 

cultivation strategies, mixotrophic culture has emerged as a promising approach to enhance 

biomass productivity and metabolite synthesis. This review outlines the fundamentals of 

metabolic mixotrophy in microalgae, focusing on key factors influencing growth and 

productivity, as well as the coupling of mixotrophic cultivation and phycoremediation 

applications, such as wastewater treatment, solid waste recycling and flue gas. Additionally, 

it briefly discusses the sustainable production of value-added biomass for use as 

biofertilizers, biofuels, in aquaculture, and pigment production within   the context of circular 

economy. 

Keywords: wastewaters, solid waste recycling, bioremediation, phycoremediation, circular 

economy.  

Resumen 

A pesar de la creciente relevancia de las microalgas en la ciencia y la industria en las últimas 

décadas, gran parte de su aplicación aún se enfrenta a diversos cuellos de botella que impiden 

que sus derivados contribuyan en mayor medida a la economía y a la sociedad. Entre las 

estrategias de cultivo, el cultivo mixotrófico ha surgido como un enfoque prometedor para 

mejorar la productividad de la biomasa y la síntesis de metabolitos a menor costo. Esta 

revisión aborda los fundamentos de la mixotrofía metabólica en microalgas, centrándose en 

los factores clave que influyen en el crecimiento y la productividad, así como en el 

acoplamiento de los cultivos mixotrófico con la ficorremediación, como el tratamiento de 

aguas residuales, la reutilización de residuos sólidos y el aprovechamiento de gases flue. 

Además, se analiza brevemente la producción sostenible de biomasa de valor agregado para 

su uso como biofertilizantes, biocombustibles, en la acuicultura y la producción de pigmentos 

dentro de un contexto de economía circular. 

mailto:eugenia.olguin@inecol.mx)


Revista Latinoamericana de Biotecnología Ambiental y Algal 

Vol. 16 No. 1 pp. 1-22. 

 

©The Author(s) 2025. This article is published with open access by Sociedad Latinoamericana de 

Biotecnología Ambiental y Algal 

2 
 

Palabras clave: aguas residuales, reutilización de residuos sólidos, biorremediación, 

ficorremediación, economía circular. 

 

A r t i c l e I n f o: Received – September 02, 2025 // Received in revised form – September 02, 2025 // 

Accepted – September 02, 2025 // Published – September 03, 2025 

 

1. Introduction 

Microalgae are fast-growing, 

photosynthetic microorganisms capable of 

fixing CO2 and releasing O2 while 

producing high biomass under diverse 

cultivation conditions. Their growth does 

not require arable land, making them a 

sustainable source of valuable compounds 

such as lipids, carbohydrates, proteins, 

pigments, and vitamins (Olguín et al., 

2022; Acién et al., 2021; Chuka-Ogwude 

et al., 2020). Microalgae’ biomass can 

later be processed into pharmaceutical and 

nutraceutical compounds, cosmetics, food 

supplements, animal feed, biofuels and 

biofertilizers, which maintain a potential 

role in sustainable bioprocesses 

(Rozenberg et al., 2024; Olguín et al., 

2022; Acién et al., 2021).  

Currently, large-scale microalgal 

cultivation is predominantly based on 

photoautotrophic systems, in which a 

single microalgal strain is grown in a 

nutrient medium under exposure to natural 

or artificial light to drive photosynthesis 

(Ray et al., 2022). This strategy is 

applicable to both freshwater and marine 

microalgal genera and is adaptable to 

diverse geographical regions (Razzak et 

al., 2024; Show, 2022; Acién et al., 2021). 

Despite its widespread application, 

photoautotrophic cultivation presents 

several limitations. These include the need 

for intensive culture management and a 

high risk of contamination by invasive 

organisms or pathogens, especially in open 

systems such as raceways and ponds (Ray 

et al., 2022; Acién et al., 2021). Moreover, 

photoautotrophic cultivation faces 

intrinsic productivity constraints due to 

self-shading, photoacclimation and low 

activity of RuBisCO (ribulose-1,5-

bisphosphate carboxylase/oxygenase), the 

enzyme responsible for carbon fixation 

during photosynthesis (Zuccaro et al., 

2020). In addition, high water 

consumption, culture medium 

formulation, harvesting, and post-harvest 

treatments increase the overall cost of 

production (Yin et al., 2020; Zuccaro et 

al., 2020; Chen et al., 2018). All these 

factors limit their scalability and reduce 

their economic and operational viability in 

industrial contexts (Ray et al., 2022).  

Mixotrophic conditions involving 

microalgae is a current strategy adapted to 

surpass these constraints. Microalgae 

capable of mixotrophic growth can uptake 

organic compounds from the culture 

medium as additional carbon sources, 

while still performing photosynthesis (EL-

Sheekh et al., 2012). This metabolic 

flexibility allows them to achieve 

significantly higher cell densities 

compared to strict photoautotrophs, 

enhancing biomass production under 

suitable conditions (Chuka-Ogwude et al., 

2020). This promotes the search and use of 

novel species, the discovery of new 

bioactive compounds and, therefore, the 

expanding of commercial potential of 

microalgae-based products. Furthermore, 

these systems can be coupled to the use of 
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wastewaters as source of nutrients, solid 

waste media and greenhouse gases, 

including COx, SOx, and NOX (Olguín et 

al., 2022; Goswami et al., 2022; Chuka-

Ogwude et al., 2020), thus lowering 

production costs and developing more 

integrated systems. 

This review summarizes current 

research on mixotrophic cultivation of 

microalgae for bioremediation 

approaches, and the potential applications 

of the resulting biomass as biofertilizers, 

biofuels, animal feed, aquaculture, and as 

source of valuable metabolites. 

 

2. Fundamentals of 

mixotrophic culture 

 

2.1 Mixotrophy in 

microalgae 

Mixotrophy is defined as the 

regime where microalgae strains can 

combine autotrophic and heterotrophic 

metabolism, allow the uptake of organic 

compounds while use light as the main 

source of energy (Castillo et al., 2021). 

Thus, inorganic carbon in the form of CO₂ 

is fixed, and organic carbon dissolved in 

the culture medium become essential for 

sustaining mixotrophic growth and 

cellular metabolism (Patel et al., 2020; 

Zuccaro et al., 2020). Reducing sugars and 

other organic compounds like fructose, 

sucrose, glucose, glycerol, acetate and 

ethanol have been used to induce 

mixotrophic cultures (Table 1).  

Not all microalgae are able to grow 

under this culture mode or utilize the same 

substrates. Such is the example of 

Nannochloropsis gaditana, which could 

grow mixotrophically using glucose and 

glycerol, but not acetate (Menegol et al., 

2019). Likewise, the addition of glycerol 

promoted the growth of Phaeodactylum 

tricornutum, whereas glucose was not 

utilized as carbon source (Huang et al., 

2015). In contrast, mixotrophic culture of 

Chlorella vulgaris and Leptolyngbya sp. 

showed higher net biomass when 

supplemented with sodium acetate 

compared to dextrose (Silaban et al., 

2013). This can be explained by the 

presence of membrane transport proteins 

that facilitate the assimilation of different 

carbohydrate molecules (Smith et al., 

2020). In Chlorella sp., glucose can induce 

an active transport system of hexoses 

formed by the proteins HUP1, HUP2 and 

HUP3 (Lee, 2004). Meanwhile, Galdieria 

sp., a red microalga, has developed a 

unique uptake system of proton 

symporters, which allows the microalga to 

use disaccharides, hexoses, pentoses and 

organic acids (Morales-Sánchez et al. 

2015). Acetate uptake, on the other hand, 

is mediated by the mono-

carboxylic/proton transporter protein 

(Perez-Garcia et al. 2011). Particularly, 

acetate has been used to successfully grow 

P. tricornutum, Cyclotella cryptica, 

Tetraselmis suecica (Smith et al., 2020), 

Chlamydomonas reinhardtii (Lacroux et 

al., 2021) and Chlorella sorokiniana 

(Lacroux et al., 2021; Lacroux et al., 

2020).  

In addition, the activation of 

metabolic pathways that allows organic 

substrates to be utilized is also necessary 

(Smith et al., 2020). As a result, carbon 

metabolism under these conditions differs 

from the one observed during 

photoautotrophic growth, thereby altering 

intracellular carbon fluxes and their 

distribution (Smith et al., 2020). For 

instance, when glucose was used to induce 

mixotrophy, both C. vulgaris (Zúñiga et 

al., 2006) and Asterarcys sp. (Li et al., 

2020) showed higher activity of the 
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glycolytic pathway (EMP) and the pentose 

phosphate pathway (PPP) in contrast to 

phototrophic ones. In C. vulgaris, 

assimilated glucose is directed into the 

cytoplasm (EMP), chloroplasts (EMP and 

PPP) and thylakoids, where it is 

transformed in either lipids and pigments 

precursors, or pyruvate, in which case it is 

further internalized into the mitochondria 

and enters the tricarboxylic acid (TCA) 

cycle for respiration. Tanner (2000) 

reported that only about 1% remains as 

free glucose, and more than 85% of the 

glucose is assimilated and converted to 

oligo- and polysaccharides.

  

Table 1. Mixotrophic culture of microalgae and cyanobacteria using different organic 

substrates and concentrations 

Culture type 
Organic 

substrate 
Concentration 

Biomass 

yield Reference 

(g L-1) (g L-1) 

Arthrospira 

(Spirulina) platensis Glucose 2.0 5.29 Li et al., (2018) 

  Acetate 0.5 2.11 Li et al., 2023 

Arthrospira 

(Spirulina) sp. Glycerol 2.5 1.94 de Morais et al., (2020) 

Asterarcys sp.  Glucose 10.0 3.71 Li et al., (2020) 

Chlorella 

sorokiniana Glucose 4.0 3.55 Li et al., (2014) 

  Acetate 1.0 1.70 Cecchin et al., 2018 

Chlorella sp. Fructose 1.0 0.37 

Lin and Wu (2015) 
  Glucose 1.0 0.45 

  Glycerol 1.0 0.45 

  Sucrose 1.0 0.45 

Chlorella vulgaris Acetic acid 0.05 M 2.37 Yu et al., (2020) 

Dunaliella salina Acetate 100 mM  - Chavoshi and Shariati 

(2019)   Glucose 60 mM  - 

Euglena gracilis Ethanol -  1.79 
Inwongwan et al., 

(2025) 

Galdieria 

sulphuraria  Glucose - 8.10 Abiusi et al., (2022) 
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Table 1 (continued). Mixotrophic culture of microalgae and cyanobacteria using different 

organic substrates and concentrations 

Culture type 
Organic  

substrate 
Concentration 

Biomass  

yield Reference 

(g L-1) (g L-1) 

Haematococcus 

pluvialis Ribose 1.3 1.15 Pang and Chen (2017) 

Nannochloropsis 

gaditana  Glucose 5.0 1.08 Menegol et al., (2019) 

  Glycerol 1.0 1.07 

Nannochloropsis 

oceanica Glucose 10.0 0.90 

Mitra and Misha 

(2018) 

Scenedesmus 

obliquus Ethanol 1.84 758.45 Matsudo et al., (2016) 

Scenedesmus 

quadricauda Xylose 4.0 1.03 Song and Pei (2018) 

Tetraselmis sp. Glucose 5.0 2.03 Lari et al., (2019) 

 

 

Instead, Phaeodactylum sp. 

transforms glucose in the cytoplasm using 

the Entner-Doudoroff and the 

Phosphoketolase glycolytic pathways 

(Zheng et al., 2013). P. tricornutum can 

also metabolize glycerol through the 

Calvin cycle, where it is later transformed 

into ribulose-1,5-bisphosphate (RuBP). In 

both cases (glucose and glycerol), 

photorespiration and RuBisCO activity are 

used by the cell to synthetize amino acids, 

mainly glycine and serine, from the 

organic carbon substrate. For glycerol, this 

process has proven to be modulated by 

nitrogen availability (Huang et al., 2015). 

However, the exact mechanism in 

which photosynthesis and respiration 

concur is still unclear. Some studies have 

proposed that both regimes (autotrophic 

and heterotrophic) function independently 

(Girard et al., 2014; Marquez et al., 1993), 

while others suggest the two metabolic 

processes interact and affect each other (Li 

et al., 2014; Acién et al., 2009; Yu et al., 

2009; Vonshak et al., 2000). These 

differences are most probably driven by 

the underlying metabolic pathways 

developed in each strain, as well as by 

other environmental factors associated to 

the culture, as found in P. tricornutum by 

Huang et al. (2015). In hindsight, more 

studies are required to clarify mixotrophic 

mechanisms and further optimize both 

growth conditions and the production of 

high-value metabolites in each strain 

(Castillo et al., 2021). 

 

2.2 Factors affecting 

biomass production 
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Microalgae are flexible organisms, 

capable to adapt to environmental changes 

and fluctuations in nutrient availability. 

Nevertheless, optimizing both light 

conditions and carbon supply is essential 

for designing efficient mixotrophic 

systems. By carefully adjusting 

photoperiods and light intensity, it is 

possible to alternate between light-driven 

and organic carbon-based metabolic 

pathways, thereby enhancing overall 

growth and metabolite accumulation 

(Patel et al., 2020). For example, different 

combinations of light intensity and glucose 

concentration were recorded for optimal 

biomass production of Chlorella sp. (100 

mol photon m-2 s-1  and 1 % glucose), 

Scenedesmus obliquus (100 mol photon 

m-2 s-1 and 2 % glucose), C. vulgaris (80 

mol photon m-2 s-1 and 1 % glucose) and 

Botryococcus braunii (80 mol m-2 s-1 and 

1 % glucose) (Gim et al., 2014). Similarly, 

biomass yield attained by Chorella 

protothecoide at 150 mol photon m-2 s-1 

(light-sufficient conditions) was 

comparable to the one obtained at 35 mol 

photon m-2 s-1 (light-deficient conditions) 

when cultured under continuous light 

exposure. However, when photoperiod 

(16h light/8h dark) was applied at a light-

deficient conditions, biomass yield 

decreased. Similar variations were 

observed while using acetic acid and 

glycerol as substrates (Patel et al., 2019). 

Concentration of organic 

substrates can also affect greatly biomass 

growth. Nannochloropsis oculata, 

Dunaliella salina and C. sorokiniana were 

found to have different optimal glucose 

concentration under the same culture 

conditions (Wan et al., 2011). Pigment and 

lipid content in the three species were also 

greatly influenced by this parameter (Wan 

et al., 2011). This was also observed by 

Lacroux et al. (2021) for C. sorokiniana 

cultures using acetate and butyrate, where 

biomass yields decreased by 26-48% and 

25%, respectively, when increasing initial 

concentrations from 1.0 g L−1 to 2.0 g L−1. 

Moreover, some organic carbon sources 

can be non-favorable for certain species, 

despite being able to grow mixotrophically 

(Lacroux et al., 2021; Kröger and Müller-

Langer, 2011; Wan et al., 2011). Such is 

the example of Nannochloropsis oceanica; 

in this case, biomass productivity 

decreased when glucose was added (Mitra 

and Mishra, 2018). This also seems true 

for cyanobacteria like Arthrospira 

(Spirulina) sp., where the addition of 

glycerol affected negatively on biomass 

production (Markou et al., 2019).  

Other nutrient sources and 

concentrations play a critical role. For 

instance, nitrogen has been described as an 

important regulator in mixotrophic uptake 

and metabolization of organic compounds 

(Li et al., 2019). Huang et al. (2015) 

reported that sodium acetate promoted the 

growth of P. tricornutum in nitrogen-

replete conditions. However, under 

nitrogen-limited conditions, growth was 

slower despite the presence of acetate, 

indicating a reduced mixotrophic 

advantage. More recently, Rosa et al. 

(2023) observed a synergistic effect 

between urea and acetate in C. reinhardtii 

cultures, which enhanced photosynthesis 

under mixotrophic conditions and 

subsequently improved cell growth. 

Interestingly, mixotrophic cultivation of 

Arthrospira platensis also demonstrated 

enhanced growth and greater tolerance to 

high ammonium concentrations (Li et al., 

2019). These studies show that successful 

medium manipulation for microalgae 

cultivation can be achieved by screening 

and selecting appropriate nitrogen sources 

for each species or strain, which helps to 
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optimize biomass production and 

improves assimilation of other nutrients. 

2.3 Advantages of 

mixotrophic cultures 

Mixotrophic cultivation of 

microalgae offers several advantages over 

strictly autotrophic systems, making it 

particularly attractive for industrial 

applications. As previously discussed, 

unlike autotrophic cultures that rely solely 

on light, mixotrophic systems utilize both 

light and organic carbon sources, reducing 

dependence on continuous light and 

minimizing dark-phase biomass loss. This 

dual-mode metabolism allows microalgae 

to overcome key limitations of 

phototrophic growth, such as 

photooxidative stress, photolimitation, and 

photoinhibition (Patel et al., 2020; Patel et 

al., 2019; Wang et al., 2014; Kröger and 

Müller-Langer, 2011; Vonshak et al., 

2000). Additionally, self-shading — a 

common issue in high-density 

photoautotrophic cultures due to limited 

light penetration — is less problematic 

under mixotrophic conditions, supporting 

higher biomass densities (Wan et al., 

2014). This can also translate into 

significantly higher growth rate and 

biomass productivity in a shorter time 

frame. 

Mixotrophic cultures also 

overcome limitations associated with 

purely heterotrophic systems. While both 

utilize organic compounds, heterotrophic 

microalgae require complete darkness for 

optimal growth and rely exclusively on 

organic substrates for both carbon and 

energy (Morales-Sánchez et al., 2015). 

The need for large amounts of sugars can 

increase production costs, carry more risk 

of biological contamination, and 

compromise photosynthetic metabolites 

(Acién et al., 2021; Barros et al., 2019; 

Chen et al., 2018). Because mixotrophic 

systems also utilize light for growth, they 

require significantly less organic carbon, 

making the process more cost-effective 

while still achieving higher yields (Patel et 

al., 2019; Kröger and Müller-Langer, 

2011). Notably, mixotrophic microalgae 

present a highly efficient strategy for 

wastewater and organic-rich solid waste 

treatment. These can serve as a valuable 

supplement to the culture medium, 

providing nutrients - such as nitrogen, 

phosphorus, sulphates and potassium - and 

organic carbon sources to enhance algal 

growth (Olguín et al., 2022; Blanco-

Vieites et al., 2023; Chuka-Ogwude et al., 

2020). Heavy metals including copper 

(Cu), zinc (Zn), cadmium (Cd), and 

chromium (Cr) present in municipal, 

agricultural, mining, and industrial 

effluents can also be removed (Goswami 

et al., 2022). Additionally, mixotrophic 

cultivation also facilitates the capture of 

greenhouse gases such as carbon dioxide 

(CO₂), sulfur oxides (SOₓ), and nitrogen 

oxides (NOₓ), contributing to climate 

change mitigation (Olguín et al., 2022). 

These applications will be further 

reviewed in section 3.   

Another important advantage is the 

enhanced synthesis and accumulation of 

valuable metabolites, as mixotrophy 

enables the combined exploitation of 

heterotrophic and photoautotrophic 

metabolic pathways, mainly 

photosynthetic and accessory pigments. 

Several studies have documented a 

remarkable accumulation of carotenoids in 

mixotrophic cultures of species like N. 

gaditana (Menegol et al., 2019). 

Accumulation of lipids and fatty acids in 

mixotrophic cultures of N. oceanica (Mitra 

and Misha, 2018), Nannochloropsis sp. 

(Fang et al., 2004), C. sorokiniana (Li et 
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al., 2014) and Isochrysis galbana (Yang et 

al., 2024) has also been reported.  

The production of biochemical 

compounds can also be modulated by 

adjusting light intensity, offering further 

control over metabolite profiles (Patel et 

al., 2020; Gao et al., 2022). In C. vulgaris, 

coupling of glucose or acetate with low 

light intensity (5000 to 8000 lux) was 

beneficial to protein accumulation, while 

the use of high light intensity (12000 lux) 

was advantageous for carbohydrate and 

lipid accumulation (Gao et al., 2022). 

 

3. Mixotrophic cultivation of 

microalga for 

phycoremediation 

approaches 

Since the industrial revolution, 

various human activities have contributed 

to water and landfill pollution through the 

discharge of agro-industrial, domestic, and 

urban wastewaters (Blanco-Vieites et al., 

2023; Plöhn et al., 2020). These streams 

typically contain high levels of organic 

nutrients, nitrogen, and phosphates, which 

can lead to eutrophication in receiving 

water bodies (Najar-Almanzor et al., 

2023) – meaning, the enrichment of 

nutrients would promote the growth of 

algae and phytoplankton in natural aquatic 

ecosystems (Bricker et al., 2008). This 

phenomenon, although problematic and 

undesirable, gave way to the concept of 

microalgal bioremediation of wastewater, 

back in the 1950’s (Oswald and Golueke, 

1960). Since then, microalgae emerged as 

a promising biological tool for wastewater 

treatment due to their ability to reduce 

biochemical oxygen demand (BOD) and 

assimilate excess nutrients; this approach 

has been further extended to 

bioremediation applications (Figure 1). 

Moreover, their effectiveness in removing 

contaminants such as heavy metals, 

pharmaceuticals and plastics has also been 

documented (Mohsenpour et al., 2021).  

Figure 1. Insertion of microalgal cultures for wastewater and solid waste bioremediation 

within a circular economy approach. 
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Microalga can remove 

contaminants through three main 

mechanisms: biosorption, biodegradation 

and bioaccumulation (Najar-Almanzor et 

al., 2023; Al-Jabri et al., 2020). During 

biosorption, functional groups present in 

microalgal membranes bind to pollutants 

in the medium, like heavy metals (Najar-

Almanzor et al., 2023; Plöhn et al., 2020). 

Carbohydrates building or enveloping the 

cell’s wall contain negatively charged 

functional groups—such as amino, 

hydroxyl, sulfide, and phosphate - that 

serve as active sites for binding positively 

charged metals (Laroche, 2022). This 

process, known as “extracellular 

adsorption”, is typically rapid and 

continues until all available binding sites 

are saturated (Al-Jabri et al., 2020). 

Biosorption is considered a passive 

process, as it occurs independently of the 

cell’s metabolism (Najar-Almanzor et al., 

2023; Plöhn et al., 2020). 

In contrast, bioaccumulation refers 

to the uptake of both inorganic and organic 

pollutants through the microalgae’s active 

metabolic processes, either accumulating 

or metabolizing them (Najar-Almanzor et 

al., 2023). Similarly, biodegradation is 

when complex compounds are degraded 

into more simple forms through complete 

mineralization or enzymatic reactions, and 

may occur either extracellularly, 

intracellularly, or as a combination of both 

(Najar-Almanzor et al., 2023). These last 

two mechanisms can involve the use of 

mixotrophic conditions. 

3.1 Wastewater treatment 

Wastewater refers to any water 

discharge that has been adversely affected 

in quality by human activity. As global 

water demand rises and pollution 

increases, effective wastewater treatment 

has become essential for protecting public 

health and the environment (Devi et al., 

2023; Plöhn et al., 2020), and microalgae 

bioremediation, also called 

phycoremediation, can serve as a 

secondary or tertiary phase in the process. 

Usually, pre-treatment stages are 

considered to adjust nutritional parameters 

and control physicochemical variables if 

needed (Al-Jabri et al., 2020). Wastewater 

composition is often irregular, and can 

either carry low levels of essential 

nutrients, or too high concentrations. They 

can also have undesirable characteristics, 

depending on their origin, such as dark 

coloration, high turbidity, extreme pH 

values, and even contain large solid 

materials (Devi et al., 2023; Plöhn et al., 

2020; Razzak et al., 2017). These 

circumstances can lead to growth 

inhibition, poor biomass productivity, low 

yields and downregulation of high-value 

metabolites (Devi et al., 2023; Al-Jabri et 

al., 2020; Razzak et al., 2017).  

Many microalgae species have 

been investigated to treat a great range of 

wastewaters, including municipal, 

domestic, industrial, mining aquaculture 

and livestock wastewaters (Blanco-Vieites 

et al., 2023; Plöhn et al., 2020; Al-Jabri et 

al., 2020; Olguín, 2012). Aquaculture 

wastewaters are usually treated with 

marine microalgae like T. suecica, I. 

galbana, Dunaliella tertiolecta (Andreotti 

et al., 2017), and Navicula sp., Nitzchia 

microcephala and Chlorella marina (Meril 

et al., 2022). Particularly, the use of 

microalgae for aquaculture bioremediation 

poses a great perspective in applied 

circular economy. Because aquaculture 

wastewaters often contain elevated 

concentrations of organic and inorganic 

nitrogen – originated from undigested feed 

and excreted fecal matter - microalgae can 

be culture using the generated wastewater 

and channeled back as feed in the industry 
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(Tham et al., 2023; Milhazes-Cunha and 

Otero, 2017).  

Agricultural activities are also rich 

in nutrients that can be exploited by 

microalgae. For instance, 

Nannochloropsis limnetica was grown 

during a year in wastewater obtained from 

the greenhouse of tomato production, 

obtaining even better results than BG11 

medium (Guiscafré-Rodea et al., 2018). 

Similarly, vinasse has been used to culture 

Arthrospira maxima (dos Santos et al., 

2016) and Neochloris oleoabundans 

(Olguín et al., 2015a). In some research, a 

combination of different wastewater 

sources can be used to improve biomass 

growth, as was the case of C. vulgaris in 

nejayote and swine wastewater (López-

Pacheco et al., 2019).   
Several microalgal strains have 

been documented to mediate the removal 

of pharmaceutical contaminants from 

hospital effluents, industrial streams and 

domestic wastes (Xiong et al., 2018). Such 

is the case of C. sorokiniana, capable of 

removing diclofenac, ibuprofen, 

paracetamol, metoprolol, carbamazepine 

and trimethoprim (Wilt et al., 2018). 

Likewise, Nannochloropsis sp. uptake 

played a role in the removal of triclosan, 

carbamazepine, trimethoprim and 

sulfamethoxazole (Bai and Acharya, 

2017).  

Overall, bioremediation of 

wastewater by microalgae constitutes a 

cost-effective approach to large-scale 

cultivation and supports the development 

of integrated setups near existing industrial 

sites, eliminating the need for fertile land 

and helping to improve the ecological 

health of nearby water sources (Acién et 

al., 2021; Mohsenpour et al., 2021). 

Furthermore, treated wastewater can be 

subsequently used as irrigation water or to 

obtain compounds excreted by 

microalgae, such as exopolysaccharides 

(Morais et al., 2022; Anda-Sánchez, 

2017). 

3.2 Solid waste recycling 

The recycling of solid waste as a 

nutrient source for microalgae cultivation 

presents a promising avenue for 

integrating waste management with 

sustainable bioresource production. 

Recovering valuable nutrients from 

organic and agro-industrial solid wastes—

such as livestock manure (e.g., cattle and 

pig farm waste) (Abu Hajar et al., 2017; 

Olguín et al., 2003), food and agricultural 

residues (e.g. corn silage) (Drosg et al., 

2020), and discarded fruits and vegetables 

(González-Ortiz, 2025; Gaytán et al., 

2023)—not only helps mitigate 

environmental pollution but also reduces 

food waste and decreases industrial 

reliance on global natural resources 

(Olguín et al., 2022; Fernández et al., 

2021). 

Solid wastes require a pre-

treatment stage that allows the nutrients to 

be bioavailable and in optimal 

concentrations for microalgae to consume 

(Kim et al., 2022). This can involve 

biodegradation of organic matter by other 

microorganisms, like fungi, yeast and 

bacteria. For instance, wheat bran could be 

used for mixotrophic culture of C. vulgaris 

and S. obliquus after being pre-treated by 

fungi, which allowed for the conversion of 

the wheat into soluble products that could 

be up-taken by microalgae (EL-Sheekh et 

al., 2012). Nevertheless, biodegradation 

can also occur when treating by-products 

of industrial processes by the same 

microalgae– this was the case of N. 

limnetica, which was capable of secreting 

extracellular β‐galactosidase to hydrolyze 

lactose (present in the culture medium) 

into monosaccharides, prior to absorption 
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and further process through mixotrophic 

metabolism (Li et al., 2024).  

One of the most used techniques is 

anaerobic digestion (AD), a biological 

degradation of organic matter driven in the 

absence of oxygen (Chuka-ogwude et al., 

2020). Biogas can be obtained from AD, 

along with non-gasified liquid 

(leachates/effluents) and solid (digestates) 

by-products (Chuka-ogwude et al., 2020). 

These byproducts are high in nutrients, and 

therefore are the ones added to microalgae 

culture medium (Bauer et al., 2021; 

Chuka-ogwude et al., 2020). The nutrient 

composition of AD leachates and 

digestates is directly connected to the 

feedstock used for the anaerobic digestion, 

which, in turn, will have a direct effect on 

pH value, salinity and turbidity of the 

cultivation medium (Bauer et al., 2021). A 

dilution rate is needed usually applied 

based on the concentration of macro-

elements like nitrogen in the form of 

ammonium (Bauer et al., 2021).  

Mixotrophic cultivation using a 

digestates and effluents from different 

livestock has been studied in the last few 

decades.  For example, pre-treated pig 

manure has been used to successfully 

stablish microalgal culture with species 

like Chlorococcum sp. (Montero et al., 

2018), N. oleoabundans (Olguín et al., 

2015b) and Arthrospira sp. (Olguín et al., 

2003).  

Agricultural residues and food 

waste are also high valuable for 

microalgae culture. The growth of 

Lagerheimia longiseta, Monoraphidium 

contortum and S. quadricauda using 

biocompost of discarded fruits and 

vegetables as alternative culture medium 

proved to be comparable of the growth 

obtained with WC medium (Medeiros et 

al., 2019). Similarly, the use of food waste 

leachates for Arthrospira maxima’s 

biomass production was proven by Gaytán 

et al. (2020) and González-Ortiz (2025).  

Seawater microalgae can also be 

grown using solid wastes if the medium is 

supplemented with essential salts to 

sustain the culture. N. oculata showed that 

it was capable of growing in a mix of 

seawater, saline produced water obtained 

during oil and gas extraction, and liquid 

digestate from AD of an industrial scale 

biogas plant, when salinity remained lower 

than 60 g L−1 (Parsy et al., 2020).  
 

3.3 Carbon sequestration 

and flue gas utilization 

Efforts have been made to prevent 

the release of CO₂ into the atmosphere by 

enhancing microalgal systems to capture it 

from industrial emissions—also known as 

flue gases (Olguín et al., 2022; Acién et 

al., 2021; Yu et al., 2020). This would 

allow the production of high value-added 

products such as pigments, proteins, and 

energy sources like biofuels, with more 

environmentally friendly characteristics 

(Li et al., 2023; Acién et al., 2021). 

However, low solubility of CO2 in liquid 

medium leads to the lower CO2 fixation 

efficiency, and a constant supply of flue 

gases to the culture can lead to pH 

imbalance and inhibit microalgal growth, 

limiting the application of this technology 

(Li et al., 2023; Acién et al., 2021; Du et 

al., 2019).  

In this matter, mixotrophic 

cultivation has been proposed to enhance 

carbon sequestration efficiency (Li et al., 

2023). Recently, Yu et al. (2020) 

developed an open pond, mixotrophic 

system using C. vulgaris cultures, where 

5% CO2 was continuously bubbled during 

daytime, and acetic acid was added at 

night to regulate the pH value within 

neutral range. This treatment resulted in 
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higher growth rate and biomass 

production, when compared to 

photoautotrophic cultures, and increased 

CO2-fixation in contrast to only adding 

acetic acid as carbon source (Yu et al., 

2020). Similar patterns for improved 

photosynthetic carbon fixation have been 

reported for Asterarcys sp. using glucose 

(Li et al., 2020), and A. platensis using 

acetate (Li et al., 2023). To a greater 

extent, an integrated systems of 

microalgae-based CO2 fixation coupled to 

wastewater treatment was achieved with 

C. vulgaris using seafood processing 

wastewater (Jain et al., 2019).  Even 

though, more research regarding this 

subject is still necessary, since this 

integrated approach shows considerable 

promise. 

 

4. Biomass application 

While cleaning wastewaters and 

recycling solid waste as a cost-effective 

culture medium, microalgae produce 

valuable biomass that is suitable for 

various purposes such as bioenergy, 

bioactive compounds and biomaterials 

(Acién et al., 2021). Microalgal biomass 

application depends on its composition. 

For example, high amounts of proteins and 

lipids are of great value for livestock and 

aquaculture feed (Acién et al., 2021). Both 

Chlorella sp. and Arthrospira sp. are well 

known for their elevated protein content 

and safe consumption (Kim et al., 2022). 

Particularly Arthrospira sp. has shown a 

great ability to grow in alternative culture 

medium in open ponds; due to it, is of great 

interest in this realm (Olguín et al., 2003). 

Similarly, Isochrysis zhanjiangensis was 

used for treating aquaculture wastewater 

and could later be used as fish feed (Zheng 

et al., 2011).  

On the other hand, a high content 

of lipids and saturated fatty acids can be 

used to produce biodiesel or biogas (Al-

Jabri et al., 2020). Chlorella sp. (Jain et al., 

2019; Lin et al., 2015), M. contortum 

(Medeiros et al., 2020), Chlorococcum sp.  

(Montero et al., 2018), S. obliquus (Girard 

et al., 2014) and N. oleoabundans (Olguín 

et al., 2015a) are examples of microalgae 

grown under mixotrophic conditions with 

this potential application.  

Remaining biomass after cell 

disruption for the extraction of other 

metabolites may contain some of the 

essential elements that plants require for 

their growth, like free amino acids, 

potassium, phosphorus, chlorine, carbon 

and sodium (Gaytán et al., 2023; Acién et 

al., 2021). Thus, it might be used as crops 

biofertilizers and bioestimulants in 

agricultural approaches, as proposed by 

Gaytán et al. (2023) for A. maxima 

biomass grown in food leachates.  
One of the highest-valued products 

obtained from microalgae are pigments. 

Microalgal cell produce these 

photosynthetic compounds to harvest light 

(e.g. chlorophylls, phycocyanin, 

phycoerythrin) and protect themselves 

from light-stress conditions (carotenoids). 

These portray bioactive activities and can 

be used for health and cosmetic 

applications (Acién et al., 2021). Using 

mixotrophy, some species have been 

documented to increase pigment 

production and accumulation, as reported 

by Morowvat and Ghasemi (2016) for D. 

salina; they were able to obtain 8.12 mg of 

β-carotene g-1 DW using glucose. In other 

cases, the production of metabolites such 

as phycocyanin did not show statistical 

differences between photoautotrophic and 

mixotrophic conditions, but the increase in 

biomass productivity and concentration 

per area (m-2) derived into higher pigment 
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recovery (Abiusi et al., 2022). Likewise, 

A. platensis grown in whey boosted its 

chlorophyll production, as well as other 

secondary metabolites, including phenolic 

compounds and flavonoids (Herrera-

Peralta et al., 2022). Mining wastewater 

also promoted phycocyanin production in 

A. maxima (Blanco-Vieites et al., 2023).  

This variety of microalgae-derived 

products, obtained from revalorization of 

both water and solid wastes, shows the 

great extent of possibilities and industrial 

processes that can benefit from this 

technology. Furthermore, as previously 

mentioned for aquaculture 

phycoremediation, this highlights the 

circular economy potential, where residues 

serve as raw materials for new products. 

Even though a big, transitional leap still 

needs to be taken - based on further 

research – the potential of these systems 

lays a solid foundation for their integration 

into sustainable and economically viable 

industrial frameworks. 

5. Conclusion 

Mixotrophic cultivation of 

microalgae has emerged as a highly 

promising strategy for integrating 

wastewater treatment with the sustainable 

production of biomass and high-value 

bioproducts. Taking advantage of the 

unique capabilities of microalgae to grow 

in diverse waste streams—while 

simultaneously removing pollutants and 

assimilating carbon dioxide—positions 

them as a key component in 

phycoremediation and circular 

bioeconomy initiatives. Current research 

highlights the potential of mixotrophic 

systems to revalorize solid and liquid 

waste residues as nutrient sources, 

supporting microalgae-based biorefineries 

that produce biofertilizers, biofuels, 

animal feed, aquaculture inputs, and 

valuable metabolites. However, to achieve 

the full potential of these systems at 

industrial scale, further work is needed to 

optimize strain selection, to optimize 

wastewater or waste pre-treatment to 

ensure the consistency and suitability of 

waste-derived media, and to assess long-

term biomass productivity under variable 

environmental and wastewater conditions. 

Further advances in these areas are critical 

for developing economically viable and 

environmentally sustainable microalgal 

technologies. 
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